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Abstract. We study how humans learn from AI, leveraging an introduction of an AI-powered Go 
program (APG) that unexpectedly outperformed the best professional player. We compare the move 
quality of professional players to APG’s superior solutions around its public release. Our analysis of 
749,190 moves demonstrates significant improvements in players’ move quality, especially in the 
early stages of the game where uncertainty is highest. This improvement was accompanied by a 
higher alignment with AI’s suggestions and a decreased number and magnitude of errors. Young 
players show greater improvement, suggesting potential inequality in learning from AI. Further, 
while players of all skill levels benefit, less skilled players gain higher marginal benefits. These 
findings have implications for managers seeking to adopt and utilize AI in their organizations. 
 
Managerial Abstract. We examine how professionals can learn from AI by studying an AI-powered 
Go program (APG) that outperformed the best professional player. By analyzing 749,190 moves, we 
find that players’ move quality improved significantly, closely aligning with the AI’s 
recommendations. The number and magnitude of errors also decreased. This learning effect was 
particularly strong early in the game where decisions are more uncertain. Young players showed 
greater effect, suggesting that learning from AI may vary by age. While players of all skill levels 
benefited, those with less skill saw the greatest improvement. These findings highlight the 
instructional role of AI and offer guidance on how to effectively integrate AI into organizations to 
enhance worker performance across different age groups and skill levels. 
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1. INTRODUCTION 

Artificial intelligence (AI) has developed substantially to date, and its capabilities have reached or 

even surpassed those of humans in numerous domains (Rai et al., 2019).1 For instance, AI has 

outperformed human experts in strategic gameplay (Silver et al., 2017), medical diagnosis (Kim 

et al., 2021), bioinformatics (Senior et al., 2020), and drug discovery and development (Savage, 

2021; Smalley, 2017). The rapid advancement of AI is transforming the future of professional 

work (De Cremer, 2020). In particular, AI helps workers perform better because it provides real-

time assistance with their tasks (e.g., Allen & Choudhury, 2022; Choudhury et al., 2020; Lebovitz 

et al., 2022; Tong et al., 2021). Consultants utilizing AI completed more tasks and produced 

higher-quality work than their counterparts who did not use AI (Dell’Acqua et al., 2023). By 

comparing their own judgments to those provided by AI-based solutions, medical professionals 

improve the quality of their diagnoses (Lebovitz et al., 2022). By suggesting standardized medical 

codes, AI improves the productivity of coders and the quality of charts (Wang et al., 2019). 

To understand the role of AI in workplaces, studies have examined its potential to assist 

humans through better division of labor (Dell’Acqua et al., 2023; Lebovitz et al., 2022) or to 

substitute for human workers (Acemoglu et al., 2022; Eloundou et al., 2023). However, other 

contexts—those where labor tasks cannot be divided with AI or where AI cannot replace 

humans—have received relatively little attention; this is because of challenges in assigning 

responsibility for outcomes to AI and because of morality, security, or privacy concerns related to 

AI. Examples of these challenges include handling classified information, making medical-ethics 

decisions in areas such as organ transplantation, and judicial sentencing. Further, AI’s decisions 

are often met with resistance from those affected by them, and AI may lack the emotional 

intelligence needed to effectively deliver its outputs, especially in fields like counseling and 

 
1 We focus on the technical definition of AI as deep-reinforcement-learning algorithms, as detailed in Plaat (2022). 
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education. In such scenarios, an optimal approach may involve human workers learning from AI 

and improving their intrinsic skills to better perform tasks themselves. 

This study examines whether and how human professionals learn from AI, along with the 

mechanisms by which their performance is improved. We also shed light on AI’s differential 

effects (Allen & Choudhury, 2022; Choudhury et al., 2020) by considering individuals’ openness 

to new technologies and their ability to utilize these technologies (Barth et al., 2020; Tams et al., 

2014). Specifically, we examine the ages of individuals and their skill levels as key factors that 

could affect AI’s instructional impact. 

Studying this topic empirically can be challenging due to several difficulties: finding a 

context where AI can train human professionals (but does not perform the task directly); observing 

a decision (or a series of decisions) by humans and assessing the results; and disentangling AI’s 

clout on such decisions. Further, given that AI’s dramatic progress is only recent, the limited 

availability of data has constrained researchers from examining its impact (Seamans & Raj, 2018). 

We study professional players of Go, a strategy board game that provides a unique 

opportunity to overcome these challenges. Over thousands of years, professional Go players have 

accumulated knowledge, experience, and skill in this game. Yet the introduction of an AI-powered 

Go program (henceforth, APG) suddenly changed the way Go players learn and play the game. In 

the historic Go match (AlphaGo vs. Lee Sedol) held in 2016, AI beat the best human professional 

player for the first time and by a large margin. Shortly after this event, in 2017, the first open-

access APG, Leela, which was far superior to the best professional player, became available to the 

public. Since Leela’s release, professional Go players have used APGs heavily in their learning. 

The great advantage of the Go context is that it allows us to observe every single decision 

of each player; the entire move history is well archived and maintained for all major games 

occurring in the last few decades. Furthermore, an APG can calculate the probability of winning 
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for every move and can even perform these calculations for earlier games, those played before the 

APG was released. We calculated the winning probability of 749,190 moves by 1,241 professional 

Go players in 24,973 major games held from 2015 through 2019. We then assessed the quality of 

each move by comparing the probability of winning associated with the focal move to that of the 

APG’s best solution. Note that professional Go players are not allowed to use APGs (or any other 

tools) in a professional match. Thus, any changes in move quality (or in the probability of winning) 

after an APG release are attributable to changes in human capabilities (i.e., learning). Even without 

real-time assistance from an APG, players increasingly made moves that coincided with the APG’s 

best solutions for a given situation, demonstrating a genuine learning effect from AI. 

A recent work, Gaessler and Piezunka (2023) (henceforth, GP), studied the role of AI as a 

training partner for chess players. By leveraging the staggered access to chess computers for 

Western European players (from 1977) and Soviet players (from 1989), GP finds that players with 

initially inferior skills and limited training opportunities could benefit from training with chess 

computers. Such AI-backed simulations provided players with ample training opportunities, 

addressing the scarcity of available human counterparts. Chess computers at that time, however, 

were limited to serving as imperfect training partners (but not necessarily as instructors) because 

their performance, despite rapid improvement, had not yet reached the level of the best players. 

Building upon GP’s inspiring work, we look beyond the training role of AI and to consider 

its instructional role in a more advanced and contemporary context. The Go context of the late 

2010s is suitable for studying the full capabilities and impact of modern AI technologies, which 

are driven by machine learning and deep learning. AlphaGo in 2016 possessed computing power 

exceeding 7,500 times that of Deep Blue, the most advanced chess computer prior to 2000; in 

terms of floating point operations per second (FLOPS), AlphaGo surpasses Deep Blue by more 

than 80,000 times (Thompson et al., 2022). This superior computing power, along with high 
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accuracy in outcome predictions (further demonstrated by the defeat of the best human player) 

suggests that APGs plays a key instructional role from which players can learn and refine their 

decision-making capabilities. 

We find that, similar to the impact of chess computers on players, AI has improved human 

performance. Before APGs, the winning probability of each move by professional Go players 

averaged 2.47 percentage points lower than the best solution suggested by the APG. This gap 

decreased by about 0.756 percentage points on average (or 30.5%) and up to 1.3 percentage points 

(or 47.6%) after APG’s public release. Importantly, the improvement was accompanied by an 

increased alignment between players’ moves and AI’s top suggestions, confirming that the effects 

were indeed driven by learning from AI. However, unlike GP, we show that learning from AI leads 

to improvements across all skill levels; it does not benefit only lower-skilled or less-trained players 

as they observed. This is most likely attributable to the advancements and broad accessibility of 

modern AI, which has far surpassed human capabilities. Furthermore, we find the improvement to 

be more prominent among younger players who are open to and capable of utilizing APGs. 

We also explore the mechanisms through which professional players achieve a higher 

probability of winning. Our mediation analysis reveals that a focal player’s improvement in move 

quality is achieved mainly by reducing Errors (the number of moves where the winning probability 

drops by 10 or more percentage points compared to the winning probability of the immediately 

preceding move) and by reducing Critical mistake (the magnitude of the biggest drop in winning 

probability during the game). Additional analyses indicate that the improvement in move quality 

eventually leads to winning the game. This effect is most prominent in the early stage of a game 

where uncertainty is higher and there is more opportunity for players to learn from AI. 

 This study, along with that of GP, is among the first to provide micro-level evidence of the 

instructional role of AI in human decisions and performance. Our empirical analysis of 749,190 
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moves in Go games has meaningful implications for AI’s instructional role, notably for how it 

could educate and nurture professional decision-making capabilities in fast-paced, uncertain 

environments. Further, the fact that the young benefit more from APGs has important implications 

for digital literacy and for potential inequality in accessing, adopting, and utilizing AI. Finally, our 

findings highlight the boundary conditions and heterogeneity of AI’s effectiveness (e.g., by age 

and skill level of workers) of which managers should be aware for successful adoption and 

utilization of AI in organizations. 

2. AI AND DECISION-MAKING 

2.1. The impact of AI on human decision-making 

When making decisions, humans tend to draw on their conceptualization of the future as input into 

the decision-making process. Humans also depend on knowledge of causality, which they actively 

develop to understand how past actions impact future outcomes. Through these processes, humans 

can judge and learn from situations—even unexpected situations—to improve their decision-

making processes and outcomes (Lindebaum et al., 2020; Mintzberg, 1994). However, individuals 

are limited in their ability to process information, which slows learning and limits its scope 

(Galbraith, 1974; Simon, 1955). This in turns leads to failure to optimize decision-making 

(Kalberg, 1980). To mitigate these biases and errors, researchers propose to set goals and 

aspirations to guide decision-making and to use backward- and forward-looking decision models 

(Chen, 2008; Gavetti & Levinthal, 2000). However, the benefits of these choice models are 

marginal in alleviating the aforementioned limitations to optimal decision-making. 

Literature on information technology (IT) provides yet another set of solutions and argues 

that the adoption and utilization of new technologies compensate for these shortcomings. 

Information theory (e.g., Blackwell, 1953) and the information-processing view of the 

organization (Galbraith, 1974) propose that the more accurate and precise the information used in 
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decision-making, the higher the firm’s performance. This is primarily because IT improves a firm’s 

ability to collect, analyze, and process information for internal operational decisions. Specifically, 

IT complements organizational practices, which in turn leads to higher productivity (Bapna et al., 

2013; Brynjolfsson & Hitt, 2000). The positive relationship between the volume and quality of 

information and optimal decision-making has been supported by a plethora of studies (e.g., 

Brynjolfsson et al., 2011; Davenport & Harris, 2017). 

As data availability has grown, researchers have extended these arguments to data-driven 

decision-making. The data about consumers, suppliers, competitors, partners, and the utilization 

of large-scale analytics have supported decision-making (Brynjolfsson et al., 2011). For example, 

Brynjolfsson et al. (2011) found that the adoption of data-driven decision-making practices 

increases financial returns. Saunders and Tambe (2013) revealed that firms with data-driven 

decision-making at an executive level have higher productivity and higher market valuations. Data 

analytics also support decision-making for R&D search and for incremental process improvements 

(Wu et al., 2020). Overall, the adoption and utilization of new IT plays an important role in 

decision-making at both organizational and individual levels. 

Researchers have recently extended this discussion to the adoption and utilization of AI. 

The advance in AI with the development of machine learning and deep-learning algorithms 

contributes to the avoidance of mistakes and errors stemming from human judgments (Danziger 

et al., 2011). AI algorithms are fundamentally different from traditional data-driven approaches 

for several reasons (Agrawal et al., 2018). First, AI can make inferences by self-learning. AI, 

therefore, is better suited for discovering hidden patterns and can conduct insightful tasks that need 

human-like “intuition.” Second, AI performs predictions and judgments with high accuracy, and 

the accuracy increases exponentially with the number of training sessions and the quantity of data. 

With AI, therefore, humans can revisit their decision-making practices that may otherwise have 
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yielded inferior decisions. Thanks to a predictive capability, which is superior to that of classical 

statistics and econometric techniques, AI algorithms have been applied to a variety of different 

decision-making problems (Athey & Imbens, 2019). 

These distinct characteristics enable AI to outperform humans not only in repetitive work 

and recognition tasks but also in creative tasks in some domains (He et al., 2015; Mnih et al., 2015). 

Researchers find that AI performs well even in high-level cognitive tasks such as making a legal 

decision in court (Kleinberg et al., 2017), discovering protein structure in biology (Senior et al. 

2020), and playing strategic games (Schrittwieser et al., 2020), among other settings. Considering 

the assumption of bounded rationality—that decision-makers tend to balance the quality of their 

decisions with the cost, such as the cognitive effort and time required to reach their decisions 

(Kahneman, 2003)—AI can contribute to lowering cost, which in turn rebalances the accuracy of 

decisions. In other words, AI helps human decision-making by evaluating a broader scope of 

options at a lower cost and by performing a more accurate evaluation of the options available. For 

example, when a radiologist uses AI to read a chest X-ray, within a few seconds AI can show the 

probability of the patient having some predefined disease. Similarly, when professional Go players 

use AI, they can immediately learn the winning probability associated with each possible move 

and can distinguish better moves. 

Based on AI’s superior predictive power, managers have several incentives to learn from 

AI. First, classical decision-making theory proposes three conditions that face humans making 

decisions: certainty, risk, and uncertainty (Langholtz et al. 1993). Without knowing values 

associated with each choice, individuals make decisions under uncertainty, which may lead to 

unfavorable outcomes. AI, in contrast, provides accurate, predicted values and thereby reduces the 

uncertainty associated with choices. Managers who learn from AI therefore can make decisions 

under less uncertainty. 



8 

Second, the unified theory of acceptance and use of technology (Venkatesh et al., 2003) 

emphasizes that managers actively accept and utilize IT when they expect superior performance 

from its use. Informed managers should thus actively adopt AI in decision-making processes and 

consequently will achieve superior performance. 

Lastly, managers who utilize AI learn to improve their decision-making ability. AI does 

not yet explain why a particular choice has better outcomes (Hagendorff & Wezel, 2020), but it 

can provide feedback on whether an individual choice is good or poor. By repeatedly comparing 

their choices with those of AI, managers can update or revise their evaluation criteria based on 

AI’s feedback (Yechiam & Busemeyer, 2005). For instance, AI-powered simulations present 

managers with opportunities for experiential learning, enabling them to understand superior 

choices through direct experience (Gaessler & Piezunka, 2023). Therefore, being equipped with 

the ability to make better evaluative choices, managers can make better decisions even without 

real-time AI assistance. 

2.2. Differential adoption and utilization of AI by age 

AI has strong potential to train employees and improve their decision-making, but not all 

professionals benefit from AI to the same extent. Despite its superior performance in prediction, 

AI and its related products and services are relatively new and do not have a proven record in terms 

of credibility and stability. Professionals thus perceive AI-powered tools as generally riskier to 

adopt or utilize when making important decisions, with a tradeoff between performance and risk 

(Cadario et al., 2021; Lebovitz et al., 2021). The literature on the differential effects of AI 

highlights the role of an individual’s age in the use of digital technology (Barth et al., 2020). Prior 

studies suggest that age is an important factor in adopting and utilizing new technology (Weinberg, 

2004). Notably, the learning-by-doing literature indicates that the marginal effect of learning from 

new technology varies with age (or tenure) (Allen & Choudhury, 2022; Foster & Rosenzweig, 
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1995). 

In the context of AI, extant studies have found mixed results. Wang et al. (2019) studied 

medical coders in hospitals who used AI suggestions for chart coding and found that the 

productivity of younger employees improved more than that of older employees. In contrast, 

Choudhury et al. (2020) found that senior employees, who possessed greater domain expertise than 

younger workers, tended to gain more complementary benefits from AI. Allen and Choudhury 

(2022) then suggest an inverted U-shaped relationship wherein employees with moderate 

experience are better able to utilize the algorithm tool. These studies tend to assume that seniority 

is associated with workers who have accumulated experience and breadth of knowledge. To better 

understand the differential effects of age-related learning on AI adoption and utilization, we draw 

on the literature examining algorithmic aversion and vintage-specific human capital. 

Algorithmic aversion. Algorithmic aversion is the tendency of individuals to distrust or avoid 

algorithms in decision-making (Dietvorst et al., 2015). Individuals tend to undervalue the 

performance of algorithms, even when presented with evidence of the algorithm’s superiority 

(Logg et al., 2019). Prior studies suggest that this aversion is exacerbated when individuals exhibit 

a higher level of risk aversion (Kahneman et al., 2016; Kahneman & Tversky, 1979), find a lack 

of transparency in the algorithm’s workings (Shin & Park, 2019), and demonstrate low familiarity 

with technology (Dietvorst et al., 2015). 

The degree of algorithmic aversion can also vary depending on the ages of individuals 

(Mahmud et al., 2022). Young professionals tend to exhibit lower levels of risk aversion than their 

older counterparts (Tyler & Steensma, 1998). Furthermore, older professionals tend to view 

algorithmic decisions as less beneficial (Araujo et al., 2020) and to exhibit lower trust in them 

(Lourenço et al., 2020). Allen and Choudhury (2022) show that senior professionals are more 

reluctant to accept algorithmic advice than are their younger colleagues, because seniors have 
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greater confidence in their own expertise and a greater sense of accountability for their actions. 

Building on these insights, we argue that younger professionals are less prone to algorithmic 

aversion. 

Vintage-specific human capital. Vintage-specific human capital refers to a unique set of skills 

and knowledge that is specific to a certain time period or technology (Chari & Hopenhayn, 1991). 

As technology evolves and tasks change, individuals with vintage-specific human capital are better 

equipped to adapt to and utilize new technologies effectively (Autor et al., 2003; Gibbons & 

Waldman, 2004). Younger professionals, having grown up in a digital environment from an early 

age, typically possess a better understanding of new technologies than do their elders. The 

learning-by-doing literature suggests that these experiences improve their knowledge and skills 

(Arrow, 1962; Foster & Rosenzweig, 1995) and equip them with rich vintage-specific human 

capital related to emerging technologies (Morris & Venkatesh, 2000; Schleife, 2006). Hence, 

younger professionals have greater absorptive capacity for AI intricacies and are more likely to 

learn effectively from AI. 

2.3 Research questions 

Based on the arguments above, we ask two primary questions about the relationship between AI 

and human decision-making. First, does AI improve the decision-making of human experts and, if 

so, how? Second, how does the influence of AI vary among human professionals according to their 

age and other characteristics? We argue that young professionals have greater incentives and 

greater ability to utilize AI-powered tools and to benefit from them. In what follows, we 

empirically examine these research questions and conduct a series of post-hoc analyses to unpack 

what drives the observed patterns. 

3. EMPIRICAL STRATEGY 

3.1. Setting 
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The game of Go and professional tournaments. Go (or Baduk) is a two-player strategy board 

game that originated in China at least 3,000 years ago. The board consists of a grid of nineteen 

lines by nineteen lines. Players compete to control more of the board's territory, with one player 

using black stones and moving first, while the other uses white stones and moves second, 

alternating the placement of stones at the intersections of the lines. The professional Go industry 

is substantial—especially in China, Japan, South Korea, and Taiwan. More than ten major 

professional tournaments, sponsored by large corporations, are held throughout the year in each 

country. For example, the Kisei tournament in Japan—held annually since 1977 and sponsored by 

the Yomiuri Shimbun newspaper—awards 4,500,000 yen ($413,000) to the first-place winner in 

addition to per-game compensation.2 

AI’s entrance into Go. Demis Hassabis, head of the Google DeepMind team, noted that “Go is 

the most complex and beautiful game ever devised by humans … the richest in terms of intellectual 

depth” (Knight, 2016). Go has about 250150 possible moves, and the search space is often described 

as “a number greater than there are atoms in the universe” (Silver et al., 2016).3 The seemingly 

unlimited number of possible moves in Go cannot be exactly identified by brute force calculation 

(as supercomputers have done with chess); Around two decades ago in the past two decades, 

several Go software programs—such as GnuGo 2.0, Pachi, and Crazy Stone—were released, but 

the performance of these programs was far inferior to that of professional Go players who use 

superlative “intuition” and evaluation skills in making certain moves (Knight, 2016). 

Even if the latest supercomputers cannot calculate all possible moves in Go, recent 

 
2 Other examples of major competitions include the Nongshim Cup—the competition between Team China, Japan, 
and South Korea—which awards $450,000 to the winning team. The Ing Cup (also known as Go Olympics) is held 
every four years and awards $400,000 to the winning player. In 2020 Shin Jin-seo, a twenty-one-year-old from South 
Korea, earned $920,754 in award money; Imaya Yuta, a thirty-year-old from Japan, earned $1,179,456. 
3 For comparison, chess has about 3580 possible moves. After the first two moves, chess has 400 possible next moves, 
while Go has 130,000 possible next moves (Muoio, 2016). 



12 

advancement in deep-reinforcement-learning algorithms has improved AI remarkably. Instead of 

evaluating all possible solutions, AI uses these algorithms to reduce the potential moves to be 

considered and predicts sequential outcomes and winning probabilities.4 AlphaGo, the initial APG 

with these algorithms, was invented by Google DeepMind. After several quality tests, in 2016 

Google held a historic Go match between AlphaGo and the human Go master, Lee Sedol. Prior to 

this match, Lee and other Go experts expected that Lee would sweep all five games. Yet AlphaGo 

beat Lee 4–1, “a feat previously thought to be at least a decade away” (Silver et al., 2016). This 

event has been described as one of the milestones in the history of AI (Press, 2021). 

AlphaGo’s success shocked not only Go players but also the public, who believed 

computers to be far inferior at intuitive judgments made amid enormous complexity. The match 

unexpectedly demonstrated that an APG could surpass the best human player and completely 

changed how players learned and practiced Go; since Leela was publicly released in 2017, 

professional players have learned from such APGs as Leela Zero, KataGo, and Handol (Somers, 

2018).5 

How much better at Go is AI compared to humans? Go players are ranked and evaluated using 

the Elo rating system.6 Figure B.1 in Appendix B shows how Elo scores have evolved among Go 

programs. Non-AI Go software—GnuGo, Pachi, and Crazy Stone—scored less than 2,000. The 

best human players scored around 3,800. In contrast, the scores of recent APGs, which are based 

on deep-reinforcement learning, far exceed 4,000. Given this gap in Elo ratings, even top 

professional Go players have no chance of winning against APGs. Put differently, the moves 

 
4 The APG context, therefore, is distinct from the general development of IT; APGs are about high-dimensional 
calculations and predictions that only become possible with AI and deep-reinforcement-learning algorithms. 
5 Before AI, professional Go players learned from books and past games. They also held group discussions (e.g., post-
match game reviews), but it was generally impossible to quantitatively analyze moves or games. 
6 The Elo rating is calculated based on the relative capabilities of two players and their game outcome. The system 
has been widely used in other sports such as chess, football, basketball, and soccer. 
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suggested by APGs yield the highest probability of winning, and even the best player can learn 

significantly from APGs. 

Learning from APGs. In the game of Go, AI technology is employed as a learning tool. APGs are 

not designed to provide real-time predictions to players on the spot during professional matches 

(which is strictly prohibited) but rather are used as a superior instructional tool to enhance players’ 

decision-making capabilities. This distinction is important, as it highlights the potential of AI not 

only as a productivity-enhancing tool but also as a means of experiential learning. 

The testimonials of professional Go players highlight the learning effect of APGs, which 

they largely attribute to its superior performance. Shin Jin-seo (who was ranked first in the world 

in 2020) provides further insights (Noh, 2019): 

“I have been using an APG since 2017. … I look at the APG’s suggested move(s) and review other 
positions. … An APG is also used to predict the moves of opponents in the early stages. … 
Comprehending the move-level winning probability offered by APG is the new way I learn.” 

Figure A.1 in Appendix A provides a practical example of the information that professional 

Go players obtain from an APG. At any point in the game, the APG displays several optimal moves 

along with the winning probability associated with each suggested move; the different color 

schemes of the suggested moves make it easy to distinguish the very best move from others. 

Further, as a player chooses a move, the APG displays the optimal responses to that move, helping 

that player predict the opponent’s responses in the following move. Repeating this learning process 

enables professional Go players to substantially improve both their understanding of strategic 

interactions in the game and their decision-making skills. 

3.2. Research design 

We compare changes in the quality of moves by professional players around the first public release 

of an APG. In 2016, when AlphaGo was the first APG to beat the best professional Go player, 

only a scientific article about its algorithm—not the program itself—was available to players. The 
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first public APG that outperformed the best human player was Leela; its February 2017 update 

utilized the deep-reinforcement-learning algorithm used in AlphaGo. A few months later, a new 

version, Leela Zero, was developed based on the algorithm of AlphaGo Zero; this version had 

substantial impact on professional players. For example, the Korea Baduk (Go) Association and 

the South Korean National Go Team used Leela Zero for learning and training. 

Importantly, the development of APGs did not arise from demands of Go players. Before 

AlphaGo, Go programs could only play at the level of human amateurs, and professional players 

did not believe that they could ever be beaten by computer programs. DeepMind decided to 

develop the AlphaGo program solely because of Go’s profound complexity (Burton-Hill, 2016). 

Furthermore, the developer of Leela, Gian-Carlo Pascutto, made it clear that, although he had no 

interest in playing Go himself, he wanted to understand how deep learning worked. AI’s entrance 

into Go, therefore, is not correlated with preexisting conditions in the Go industry. 

To estimate the impact of APGs on the quality of moves by professional Go players, we 

first use a time-trend analysis. The event of interest occurred in February 2017 when a major 

update of Leela adopted the deep learning algorithm similar to AlphaGo. We conduct the analyses 

at the player-game level. Our sample consists of major professional Go games held from 2015 

through 2019. 

We then conduct a version of difference-in-differences estimation to understand the 

differential effects of APG. In an ideal world, we want to observe individual-level APG usage over 

time; unfortunately, such data is not available. Alternatively, we identify different age groups and 

compare the effects for younger players (“treated”) as opposed to older players (“comparison”). 

Although we do not have a clean control group—some players in the older group may have also 

adopted APG—we expect younger players to have adopted APG to a greater extent. Comparing 

the size of the relative effect for the younger and older groups will produce a smaller estimate (i.e., 
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biased toward zero) than would an ideal estimation that uses a clean control group with no APG 

usage (see, for example, Agrawal et al., 2016; Kang & Lee, 2022; Lipsitz & Starr, 2022). We run 

a set of robustness checks and adopt a similar approach for a country comparison. 

We focus primarily on early moves—the first thirty moves of each game—because, like in 

many other games, a great opening is critical to winning at Go. Chang-ho Lee, a once-in-a-century 

player, pointed out the importance of the opening and likened it to a blueprint for architecture; the 

opening strategies are general roadmaps to the way players lead the game (Noh, 2016). We also 

analyze later stages and compare the results in Section 5.5. 

3.3 Data 

Go games and professional players. We collect data on professional Go games held from 2015 

through 2019 from the Go4Go database, which has been widely used in studies of Go (e.g., Chao 

et al., 2018). The data contains detailed information on each game, its players, Komi (the number 

of bonus points given to the player who moves second), the sequence of all moves, and the game 

outcome. From Go Ratings we gather additional data on the ages, nationalities (e.g., Chinese, 

Japanese, South Korean, Taiwanese, and others), and annual rankings of professional players. We 

multiply negative one by the ranking and divide it by 1,000 to ease the interpretation of the result; 

the higher the value, the better the player. To control for the difference in players’ capabilities for 

each game, we create a variable, Rank difference, as the difference between the raw rankings of 

two players; we divide this difference by 1,000 such that a positive value indicates that the focal 

player’s ranking is lower than the opponent’s ranking. 

Measuring the quality of moves. Since Leela Zero provides the probability of winning for any 

possible move made at any particular point of the game, we use it to calculate the difference in 

winning probability between a move made by a professional player and Leela Zero’s suggested 

move, a move that would achieve the highest winning probability among alternative moves. Our 

https://www.go4go.net/go/
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main dependent variable is Move Qualityig, which represents the average difference in the winning 

probability of focal player i’s move compared to the APG’s corresponding solution for the first 

thirty moves of a game g (i.e., the game’s 1st, 3rd, 5th, …, 29th moves if the focal player moves first 

or the 2nd, 4th, 6th, …, 30th moves otherwise). For each game, we calculate separately the value of 

the move quality for each player i (i.e., the black stone holder and the white stone holder): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑦𝑦𝑖𝑖𝑖𝑖 =
 ∑ �

𝑇𝑇ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖′𝑠𝑠 𝑛𝑛𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔 −

𝑇𝑇ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴′𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔�
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where n represents the order of the focal player’s move. Move Qualityig takes a non-positive value 

(since APG is superior) and ranges from –100 (lowest quality) to 0 (highest quality). A smaller 

absolute number indicates a higher-quality move by the player. If a player places stones as 

suggested by the APG for all moves, the average difference in winning probability between the 

player and the APG is zero (Move Quality=0). This variable becomes larger in absolute value as 

a player’s moves worsen, that is, as they deviate from the best moves suggested by the APG. 

We used Leela Zero (May 23, 2020 version) along with the GoReviewPartner program to 

analyze all 749,190 moves in 24,973 games played from 2015 through 2019. The computation 

took about three months; Appendix A.2 provides the calculation and implementation details. 

Summary statistics. Table 1 provides descriptive statistics on the key variables at the player-game 

and player levels. Table 1(a) includes two observations for each game: one for the first mover 

(black stone holder) and another for the second mover (white stone holder). After omitting games 

that lacked information on players’ ages or ranks, our final sample has 46,454 observations. The 

mean of our main dependent variable, Move Qualityig, is –2.01 over the sample period. That is, the 

players’ winning probability for the first thirty moves in a game averaged 2.01 percentage points 

less than that of the APG’s best move. This is a substantial difference because the difference of 

two percentage points for each move accumulates as the game progresses. The average (raw) rank 
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of the players is 280th before transformation. The average rank difference is, by definition, zero 

(the positive and negative differences of the two players cancel each other). 

Table 1(b) shows the descriptive statistics at the player level. We identify 1,241 players 

from 2015 through 2019. The average age of players is 32.41, and the median age is 26.98. 

“Insert Table 1 here” 

4. RESULTS 

4.1. Did APG improve the quality of moves by professional players? 

Model-free evidence. We first graphically present our main outcome of interest. Figure 1(a) shows 

the weekly average value of Move Qualityig from 2015 through 2019. The vertical line indicates 

February 2017, the date of the public release of Leela, the first APG that surpassed human 

performance. This model-free illustration shows that while Move Qualityig was relatively low and 

stable over time before APGs, it increased immediately after Leela’s public release. 

“Insert Figure 1 here” 

 Time-trend analysis. We then use a formal OLS regression model to estimate the Move Qualityig 

of professional Go players around the first public release of an APG in February 2017. The baseline 

time-trend regression specification at the player-game level is 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑔𝑔 + 𝛾𝛾𝑖𝑖 + 𝛿𝛿−𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, 

where indices i and g represent player and game, respectively. Focal-player-fixed effects are 

represented by γi, while δ-i represents fixed effects for the opposing player. Yig is Move Qualityig. 

Postg is equal to 1 if a Go game is played in a quarter after February 2017 (when the APG was 

released) and 0 otherwise. Standard errors are clustered at the focal-player level to address a 

concern that the error terms are correlated across the players. β1 captures how APGs improved the 

move quality of players. 

The results are shown in Table 2. Column 1 shows that the coefficient of Postg is positive 

(β=0.756, p<0.01), indicating that Move Qualityig increased by 0.756 percentage points (or about 
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30.5 percent) on average after the APG’s public release.7 

“Insert Table 2 here” 

It is possible that the performance of professional players had been improving over time 

and that such improvement drove the results, although Figure 2 does not indicate evidence of this. 

To control for this trend, we add a Trendg variable (i.e., the number of quarters elapsed since the 

first quarter in our sample) and an interaction term (Postg×Trendg). The results are shown in 

column 2. We find a small yet positive trend (β=0.007, p<0.05), suggesting that the performance 

of professional players had improved slowly over time. Importantly, the coefficient of the 

interaction term (β=0.116, p<0.01) shows that there are much larger—that is, about seventeen 

times greater—improvements following the public release of the APG, even after performance 

trends are taken into account. The effect in the 10th quarter (i.e., the first quarter after the APG 

release) is 0.222 (–1.007+0.007×10+0.116×10). 

4.2 Did the improvement stem from learning from AI? 

To support our argument that such an improvement stems primarily from learning from AI, we 

further analyze the Move Match, or the degree to which each move aligns with the APG’s best 

solutions. If players have learned from APGs, the likelihood of their making exactly the same 

moves as the APG’s top suggestions should increase. Given that APGs are not available during 

gameplay, a player’s moves that match those of the APG exactly indicate that the player learned 

from the APG and improved their skills prior to the game. An indicator variable, Move Matchigk, 

captures, on average, how many moves of the focal player i are the same as the APG’s top k 

suggestions among the first thirty moves in a game g. We consider k=1 to be an exact match 

between the player’s move and the APG’s top suggestion. If k=3, we check whether the player’s 

 
7 All percentage changes are calculated as the relative changes in the average move quality of games played by the 
players of interest during the quarters of the sample period before the release of the APG. 
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move is among the APG’s top three suggestions: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑘𝑘  =  
 ∑ 𝟏𝟏�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ �𝐴𝐴𝐴𝐴𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑛𝑛𝑛𝑛1 ,𝐴𝐴𝐴𝐴𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑛𝑛𝑛𝑛2 , … ,𝐴𝐴𝐴𝐴𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑛𝑛𝑛𝑛𝑘𝑘 ��15

𝑛𝑛=1

15
 

Figure 1(b) illustrates the weekly average value of Move Matchigk for APG’s top suggestion 

(k=1). Before APGs, Move Matchigk remained low and unchanged over time, but after Leela’s 

public release it notably increased. This result is consistent for APG’s top three (k=3) and top five 

(k=5) suggestions and consistent when we conduct time-trend analyses (see Table B.1 of Appendix 

B), suggesting that players’ improvements are indeed the result of learning from AI. 

4.3. Differential effects of AI adoption and utilization by age 

As discussed in Section 2.2, age is an important factor that can affect the adoption and utilization 

of new technology. We plot in Figure 2, Panel (a) the model-free illustration of two different age 

groups: Young and Old. This figure shows that Move Qualityig was relatively stable and similar 

among the two groups before the APG release, while the increase in Move Qualityig is notably 

greater for the Young group afterward. 

“Insert Figure 2 here” 

We then formally test whether the APG indeed has differential effects on the move quality 

of professional players of different ages. We estimate the following model at the player-game level: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑔𝑔 ⋅ 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑔𝑔𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝛿𝛿−𝑖𝑖 + 𝜃𝜃𝑔𝑔 + 𝜖𝜖𝑖𝑖𝑖𝑖, 

where γi, δ-i, and θg represent focal-player-, opponent-player-, and quarter-fixed effects, 

respectively, for game g. Xig includes control variables such as Komi, White, Rank, and Rank 

differences between players at the player or game levels. Youngi is an indicator variable equal to 1 

if the player’s age is less than the median age of all players (i.e., less than twenty-seven years) as 

of Leela’s public release in February 2017, and 0 otherwise. 

Table 3 shows the results. Column 1 includes only Youngi and control variables with 
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quarter-time-fixed effects. Column 2 then adds the interaction term, Postg×Youngi. The coefficient 

of the interaction term (β=0.268, p<0.01) is positive; the quality improvement among younger 

players is 0.268 percentage points (or 10.9 percent) greater than that for older players. 

To check whether our results are robust when players’ inborn characteristics are considered, 

we add the player-fixed effect in column 3 and the opponent-player-fixed effect in column 4. The 

effect of AI is consistently more prominent for the younger group, whose quality of moves 

improved by 0.203–0.268 percentage points (or 8.2%–10.9%) over that of the older group.8 

“Insert Table 3 here” 

We again consider Move Match to substantiate our argument that differential 

improvements by age are indeed driven by players’ learning from APGs. Table 3, columns 5–7, 

shows the results from estimations with Move Matchigk as the dependent variable. After the APG, 

younger players (Postg×Youngi) were more likely than older players to make moves that matched 

the APG’s top suggestions. What is more interesting and convincing is that the estimates shrink as 

we broaden the set: 0.031 (k=1; column 5), 0.025 (k=3; column 6), and 0.018 (k=5; column 7). 

This occurs because, when players learn from an APG, they are more inclined to learn the very 

best move (k=1) than the near-best ones; as we expand the set (k), the impact of AI thus diminishes. 

4.4. Robustness checks 

We further check the robustness of the results in six ways: 1) an estimation with distributed leads 

and lags, 2) a sensitivity analysis by age conditions, 3) an analysis using monthly data, 4) the 

different numbers of moves for opening strategies (the first 15, 20, 40, 50, or 60 moves), 5) an 

analysis of earlier Go programs, and 6) players’ nationalities as a proxy for APG exposure. 

 
8 Note that the magnitude of the effect is smaller than that in the main analysis (0.756 percentage points in Table 2, 
column 2). As discussed in Section 3.2, this is because our empirical design uses older players as the comparison 
group; this group was also affected by APGs in the same way as the younger group (although to a lesser extent). 
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Estimation with distributed leads and lags. To check the pre-APG trend and the time-varying 

effects of the APG, we include the distributed time leads and lags in our regression: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + Σ𝑧𝑧𝛽𝛽𝑧𝑧 × 𝑍𝑍 × 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑔𝑔𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝛿𝛿−𝑖𝑖 + 𝜃𝜃𝑔𝑔 + 𝜖𝜖𝑖𝑖𝑖𝑖, 

where γi, δ-i, and θg represent focal-player-, opponent-player-, and time-quarter-fixed effects, 

respectively. The symbol Z represents the indicators for time leads and lags—that is, the number 

of quarters before or after the public release of the APG. 

Table B.2 of Appendix B, columns 1 and 2, shows the detailed regression results, and 

Figure 2(b) graphically illustrates the results. We do not find any pre-APG trend for Move Qualityig; 

the estimates for pre-APG quarters are close to and statistically not distinguishable from zero. For 

quarters after the APG’s release, the improved quality among younger players is large and 

persistent. 

Sensitivity analysis for age groups. We examine whether the results are sensitive to our 

operationalization of age groups. First, we use the average age (instead of the median age) as the 

cutoff for the younger and older groups; this increases the cutoff age from twenty-eight years to 

thirty-three years. The results in Table B.3 of Appendix B are robust to this alternative 

classification (β=0.268, p<0.01 in column 4). Second, we investigate the same model with three 

age groups based on the age tertile: Young (bottom tertile); Middle (middle tertile); and Old (top 

tertile). The results are provided in Table B.4 of Appendix B. The estimates for Postg×Youngi 

(β=0.338, p<0.01 in column 4) and Postg×Middlei (β=0.248, p<0.01 in column 4) are large. 

Importantly, the effect is most pronounced when Young players are compared to Old players, and 

the magnitude is smaller for Middle players. We obtain similar results when classifying players’ 

ages into three categories: under age twenty; twenties (ages 20–29); and thirty or older. 

Alternative time-fixed effects. To consider the time effect on a more granular level, we estimate 

the model with month-fixed effects instead of quarter-fixed effects. Table B.5 of Appendix B 
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shows that the results are consistent with this alternative. Figure B.2 of Appendix B graphically 

illustrates the results obtained from the models with the distributed time leads and lags at the month 

level; these results are similar to those shown in Figure 2(b). We once again confirm the parallel 

time trend before the release of the APG and the substantial effect post-APG. 

Opening strategy with different numbers of moves. Our results could have been influenced by the 

choice of the number of moves. To check this possibility, we estimate our models with different 

definitions for early opening moves: the first 15, 20, 40, 50, and 60 moves of the game. The results, 

shown in Table B.6 of Appendix B, are robust to these alternative definitions. 

The effect of earlier Go programs. Although Go programs prior to AlphaGo or Leela did not 

perform at the level of top human players, these programs may have offered training opportunities 

for professional players similar to the ways that training sessions with early chess computers have 

been shown to improve the skills of chess players (GP, 2023). The introduction of earlier Go 

programs therefore provides a valuable opportunity to check whether the effects are driven by 

learning from APG’s superior performance or by more frequent training opportunities (albeit with 

an inferior performance). We examined the impact of the earlier Go program, Crazy Stone, 

released in 2015; its Elo rating, just below 2,000 was inferior to the best human level (around 3,800; 

see Figure B.1 in Appendix B). Figure B.3 in Appendix B illustrates the results. We do not find 

any improvement in move quality after the release of Crazy Stone. This result rules out the 

possibility that more frequent training sessions (with inferior programs) are driving the findings 

and supports the proposition that learning from AI (i.e., from superior APGs) is the key channel 

through which players have improved their move quality. 

Players’ nationalities as a proxy for APG exposure. A Go player’s exposure to AI may differ 

depending on the player’s nationality. Of the three major countries with the largest professional 

Go leagues, access to or exposure to APGs has been relatively lower in Japan. For example, no 
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AlphaGo match was held in Japan. Further, the interest score in AlphaGo from Google Trends was 

4 in Japan compared to 100 in China and 92 in South Korea. In an interview, an expert explained 

that, in Japan, Go is considered an art form, which partly explains its slower adoption. We estimate 

a version of a difference-in-difference model comparing players in countries significantly affected 

by APGs (i.e., China and Korea) with those in a country less affected (i.e., Japan). We find that 

move quality improved significantly more for the former (see the Appendix C for details). 

5. FURTHER ANALYSES 

5.1. How did players improve when their opponents used AI? 

So far, we have focused on the focal player. An important question is, how does the quality of 

player moves vary by the extent to which opposing players learn from AI? If learning from AI 

indeed drives move-quality improvement, the effect should be greater for player pairs when both 

have heavily utilized AI; this is because play between such players most resembles situations 

where both have learned from AI. To check this, we split the sample by player age and by country 

and conduct a series of time-trend analyses to examine variation in the effect across different 

dyadic pairs. The results are illustrated as a heatmap in Figure 3. The move quality has improved 

across all pairs, but the effect is particularly marked among pairs of Young versus Young. In 

contrast, the improvement is relatively smaller for pairs of Old versus Old. This finding—that the 

effect is magnified when the moves of a player’s counterpart are more likely to be similar to those 

of APG—once again bolsters our argument that players indeed learn from AI (see Figure C.3 of 

the Appendix C for a comparison by nationality). 

“Insert Figure 3 here” 

5.2. Did better players improve more? 

The increase in average-move quality does not necessarily mean that players of different skill 

levels improved to the same extent. To explore this, we first examine the effects across the 
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distribution of players’ skill levels (à la Athey & Imbens, 2006; Lipsitz & Starr, 2022). By 

employing the change-in-changes method, we estimate the quantile treatment effects of APG by 

comparing the move quality of younger players with that of older players at different points in the 

player-game level skill distribution. The effects, illustrated in Figure 4, are positive across the 

entire range of the distribution, and the effect size is greater for those at the bottom of the skill 

distribution. 

“Insert Figure 4 here” 

Further, we compare the improvement over time of players in the top decile (10th decile) 

with those in the bottom (1st and 2nd) deciles. The model-free evidence is illustrated in Figure B.4 

of Appendix B. Panel (a) shows improvement in move quality, even among the top decile. Further, 

in Panel (b), while the top performers demonstrated notable improvement (up to 44.8%), the 

increase was even more prominent for players in the bottom deciles (up to 49.3%). This indicates 

that the performance gap between top players and others narrowed after introduction of the APG. 

5.3. Mechanisms for quality improvement: Errors and critical mistake 

We extend the analysis beyond Move Quality and delve into two important channels through which 

AI-based learning improves the quality of moves: errors and critical mistakes. This analysis is 

motivated by the norm that, after completing a Go game, players spend significant time and effort 

analyzing and evaluating each move—especially if a move was an error or a critical mistake. In 

an interview, Shin Jin-seo (who was ranked first in the world in 2020) stated: 

Before APG, players and their peers replayed games and discussed which move was an error and 
which was a critical mistake. After the public release of APGs, this replay and discussion by players 
became almost meaningless. APGs teach us by showing the accurate winning probability with each 
move. If the winning probability drops from 60 percent to 40 percent after a move, that move is an 
error. If the probability drops from 80 percent to 20 percent, that is a critical mistake. … I have to 
admit that APG-based training provides limitless help in developing my Go skills (Sohn 2021). 

To test these mechanisms, we measure the error in a game as the number of “bad” moves, those in 

which the winning probability drops by 10 or more percentage points when compared to the 
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winning probability of the focal player’s immediately preceding move. The “critical mistake” is 

the magnitude of the biggest drop in winning probability among all the moves in a game. Figure 

B.5 of Appendix B shows the model-free trend of errors (in Panel a) and the critical mistake (in 

Panel b). Both the errors and the critical mistake decrease substantially after the release of the APG. 

We then conduct regression analyses on errors and the critical mistake. Table 4, columns 

1 and 3, shows that the number of errors and the magnitude of the critical mistake decreased after 

APG release. Columns 2 and 4 show the results after controlling for the linear trend. The estimates 

for the interaction term (Postg×Trendg) show that the (preexisting) negative trend (β=–0.009, 

p<0.01) is discontinuously accelerated after the introduction of APG (β=–0.233, p<0.01). These 

results confirm that learning from AI improved the quality of moves of professional players by 

reducing both the number of errors (33.7%) and the magnitude of the critical mistake (21.9%). 

“Insert Table 4 here” 

5.4. Did AI-driven improvements in move quality lead to winning? 

Building upon our finding that younger players improve more than older players after learning 

from APG, we further investigate whether this improvement leads to a higher probability of 

winning a game. A model-free comparison of means reveals that the winning rates of younger 

players improve when they play against older players. The average winning rate of younger players 

increased by 10.2%, from 53.1% pre-APG (2015–2016) to 58.5% post-APG (2017–2019). We 

then formally conduct the three-step mediation analysis suggested by Baron and Kenny (1986). 

As a baseline model, we run the linear probability model of winning a game on an interaction 

between an indicator for a younger player and an indicator for a post-APG period. In Table 5, 

column 1, the improvements in move quality indeed have led to a higher chance of winning 

(Postg×Youngi: β=0.024, p<0.01); the chances of younger players’ winning average 2.4 percentage 

points (4.6%) higher post-APG, if other variables are set to mean values. 
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We then conduct the mediation analysis to test for the channels. First, we check whether 

Postg×Youngi is statistically related to the proposed mediators: Move Quality, Errors, and Critical 

Mistake. Table 5, columns 2–4, shows that Move Quality is positively associated with the younger 

group after APG, while Errors and Critical Mistake are negatively associated. Second, we confirm 

in columns 5–7 that Move Quality is positively associated with the probability of winning but 

negatively associated with Errors and Critical Mistake, without the explanatory variable 

(Postg×Youngi). Third, we examine whether the magnitude of the estimated effect of the 

explanatory variable (Postg×Youngi) decreases with inclusion of the mediators. In columns 8–11, 

the estimates for the explanatory variable (Postg×Youngi) are shown to decrease for all cases after 

adding the mediator variables when compared with those in the baseline model (column 1). In the 

separately estimated mediation models for the three mediators—Move quality, Errors, and Critical 

Mistake—the indirect effects through the explanatory variable account for 18.9 percent (p<0.01 in 

the Sobel test), 4.2 percent (p≈0.01), and 13.1 percent (p<0.01) of the total separate mediation 

effects, respectively. Taken together, younger players were more likely to win after the APG 

release through their improvements in three dimensions: Move quality, Errors, and Critical 

Mistake. 

“Insert Table 5 here” 

5.5. How did the AI effect vary throughout the game? 

Although we focus on the early (first to thirtieth) moves in the main analyses, AI’s role is not 

restricted to this particular phase. Here we extend the analysis to include later stages of the game, 

incrementally adding thirty moves (up to 180 moves) to our analysis. We graphically present 

model-free results on Move Qualityig in Figure B.6 of Appendix B. The AI effect is most prominent 

in early opening moves (for moves 1–30) and gradually decreases as we include later moves in the 

analysis. Formal analyses confirm these observations. Table B.7 in Appendix B shows the results 
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from six different regression specifications. The estimate for Postg×Youngi gradually shrinks from 

0.203 (for moves 1–30) to 0.050 (for moves 1–180). The estimates with distributed leads and lags 

are graphically illustrated in Figure B.7 of Appendix B; the improvement among younger players 

is highest for the opening strategy and weakens as moves from later stages of the game are included. 

One explanation for this may be uncertainty. At the early stage of a game, when only a few 

stones have been placed, players have the highest number of possible moves, and their ability to 

assess all alternatives and subsequent moves is significantly limited. In other words, prior to APG 

training, players relied more on heuristics or conventional opening strategies to alleviate such 

uncertain environments in which complete evaluations are not possible. This is where learning 

from AI can most help players to improve the quality of moves. As a game progresses into its mid-

to-late stages, uncertainty is reduced as more stones are put on the board, and it becomes less 

difficult to evaluate potential moves. The results suggest that the learning effect from AI can vary 

depending on the uncertainty of the environment and the opportunity to learn from AI. 

6. DISCUSSION AND CONCLUSION 

6.1. APG and chess computers 

The focus of this study aligns with GP’s central question regarding the impact of chess computers 

on players’ performance. GP leveraged a differential access to chess computers based on players’ 

location (Western Europe versus Soviet Union) and analyzed 20,000 chess players in 500,000 

tournaments that took place during 1970–2000. The emergence of chess computers offered an 

initial testbed for studying the impact of AI-assisted training in complex strategic interactions. GP 

find a positive effect of the introduction of chess computers on players’ performance. Importantly, 

the benefits of chess computers were confined to players whose skills were inferior to the chess 

computers, suggesting a catch-up effect along the skill distribution. GP then argues that training 

opportunities are the primary mechanism; that is, chess computers are a substitute for human 
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training partners, which are limited in supply, although the substitution is not complete because, 

unlike humans, computers do not make mistakes. 

Extending GP’s research, our study brings unique insights into how humans learn from AI 

and improve their decision-making. First, the APG is powered by advanced (deep) reinforcement 

learning. Unlike the chess computers of the 1970s–1990s, APG performance has surpassed that of 

the best human players.9 Second, APGs were released free of charge and nearly simultaneously, 

with minimal gaps in their release times, which provides a unique opportunity to assess the impact 

of AI penetration.10 Third, APGs provide players with more information. An APG makes three to 

five suggestions, gives the winning probabilities associated with those moves, and further suggests 

the likely next five to ten moves. Chess computers, in contrast, provided only one deterministic 

move and no further information. 

Fourth, taking advantage of APGs’ superiority, we study how humans learn from AI; this 

takes a step forward from GP’s view of AI as a training (sparring) partner that is not necessarily 

better than the trainee. Our study also highlights the democratization of high-quality learning 

opportunities, as players are able to learn from the strategies and decisions of the very best player, 

APG. The APG’s superior performance was paramount in enhancing the skills of professional Go 

players, perhaps because Go is much more complex than chess. Fifth, we expand our discussion 

on the boundary conditions—namely, the ages and skill levels of players, exposure to AI by 

country, and the stage of the game—of AI’s instructional roles. We also conduct dyadic analyses 

by players’ age and country to study interactions between players. We hope this scholarly dialogue 

with GP deepens the understanding of how humans train with and learn from AI. 

 
9 The Elo rating of a pre-APG software, Crazy Stone, is similar to that of a later-stage chess computer in GP’s study. 
Unlike the findings of GP, we do not find evidence that Crazy Stone improved the move quality of Go players (see 
Section 4.4). 
10 In contrast, chess computers came at a relatively high cost and were gradually diffused over several decades. For 
instance, the first commercial chess computer in 1977 cost $200 (equivalent to approximately $1,000 today). 
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6.2. Implications and limitations 

Our findings may not represent all types of human-AI interactions and their consequences. For 

example, AI might replace humans in certain tasks or domains rather than enhance human skills. 

However, instances where humans learn from AI and continue performing tasks themselves are 

neither rare nor unusual. The insights into learning from AI provided by professional Go games 

offer timely implications for the expanding role of AI and its relationship with humans. 

First, AI could reveal that what humans have long considered to be solutions may not be 

the best approaches. AI has the potential to bring breakthroughs in human knowledge, heuristics, 

and routines and to pave the way for new paradigms (Choi et al., 2023). Second, AI has broader 

applications than merely substituting for or assisting with human tasks. We provide new theoretical 

and empirical accounts of how AI instructs and transforms human decision-making (Brynjolfsson 

et al., 2021). Although researchers have recently expanded their interest in AI’s role in supporting 

human judgment (Choudhury et al., 2020; Kleinberg et al., 2017; Wang et al., 2019), studies have 

focused on AI’s real-time role as an assistant, boosting task-related performance. We highlight the 

instructional role of AI, emphasizing its potential to improve human skills and performance. Our 

findings can be applied to domains where AI has already outperformed or will soon outperform 

human activities. For example, AI’s performance in radiology rivals that of trained radiologists in 

triaging chest and breast x-rays and detecting lung cancers. Doctors learn from AI’s analysis to 

provide better diagnoses and predictions (Grady, 2019; Lebovitz et al., 2021, 2022; Reardon, 2019). 

Third, not everyone may benefit from AI equally. We show that openness to new technologies and 

the ability (characterized by individual’s age, experience, or cultural background) to utilize these 

technologies can influence the benefits reaped from AI. These findings contribute to the growing 

literature on the differential effects and potential inequality implications of AI (e.g., Beane & 

Anthony, 2023; Choudhury et al., 2020; Miric et al., 2020). Fourth, the impact of AI also depends 
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on the complexity and uncertainty of a situation. In Go, AI-driven improvement is most prominent 

in the early stages of a game. This boundary condition of AI’s effect is consistent with the findings 

in drug discovery and development (Lou & Wu, 2021) which suggest that a uniform application 

of AI would not yield optimal outcomes and could lead to inefficient allocation of AI and human 

resources. Therefore, careful consideration is required to determine where and to what extent AI 

should be adopted and utilized. 

Several of our findings and implications are relevant to managers and organizations. In the 

era of rapidly evolving AI-related technologies, a central question facing firms is how to utilize AI 

to achieve a competitive advantage and enhance performance. Our study emphasizes the 

instructional role of AI and provides insights into its potential impact in the workplace. Workers 

can benefit from AI-powered learning programs, which can enhance their decision-making 

abilities, leadership skills, and strategic thinking in complex and uncertain business environments. 

For instance, this study highlights the promise of AI algorithms in workforce education and AI-

driven human resource management, addressing issues such as algorithmic aversion and vintage-

specific skills (e.g., Choudhury et al. 2020; Gaessler & Piezunka 2023; Krakowski et al., 2022; 

Tong et al., 2021). In the realm of talent acquisition and management, obtaining information about 

candidates beyond their cover letters and resumes is crucial for assessing their suitability. AI can 

provide accurate, personalized predictions on churn, performance, and suitability, and can identify 

key evaluation criteria. However, HR managers still conduct interviews, combining their 

knowledge and experience with insights learned from AI’s analysis. This approach helps avoid 

losing potential talent due to algorithm aversion and better demonstrates the firm’s commitment 

to them through human emotional intelligence. Other examples of successful application of AI 

include performance feedback, investor relations management, and fighter pilots in air force units 

(see the Appendix D for details). 
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In integrating AI tools and offering valuable learning opportunities to workers, it is critical 

for firms to be aware of boundary conditions and heterogeneity in tailoring these programs. For 

example, the gains from using AI tools are not uniform across all workers, and relatively low-

skilled workers could gain more. When facing budget constraints, managers may prioritize using 

AI tools to enhance the performance of lower performers. Understanding how AI’s effectiveness 

is influenced by an individual’s age and prior exposure to AI could also lead to successful adoption 

and utilization of AI, fostering a firm’s innovation and growth. 

There are several limitations to this study. First, we do not have a clean control group. 

There does not exist a group without exposure to APG. Although we use player characteristics to 

proxy for APG adoption and utilization to mitigate these issues, both the treated and comparison 

groups are exposed, and thus our estimates provide the lower bounds of the effect. Relatedly, it is 

not possible to obtain individual-level data on APG usage. To mitigate this concern, we conducted 

auxiliary empirical analyses on move match and found that the improvement in move quality 

coincided with the increase in move match between players and APG. Second, the application of 

our findings to different contexts requires careful consideration. Although the domains where AI 

outperforms humans have broadened to include various settings—such as hospitals (Cadario et al., 

2021), law firms (Kahn, 2020), and sports teams (Zarley, 2021)—the Go context presents unique 

characteristics and strategic dynamics that may differ from other domains. Despite these 

limitations, we hope this study enriches discussions on various aspects of AI, particularly learning 

from AI, and stimulates further research. 
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Figure 1. Effects of APG on average Move Quality and Move Match: Model-free evidence 
 

(a). Move Quality 

 

(b). Move Match (k=1) 

 
Note. This figure illustrates the weekly average Move Quality (Panel a) and Move Match (Panel b) of players from 2015 through 
2019. The gray solid line represents the raw (unprocessed) weekly average value. The blue solid line and the blue area around 
it show the smoothed trend (loess; span=0.7) and the 95% confidence interval, respectively. The vertical line represents February 
2017, the date of the first public release of an APG, Leela. 
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Figure 2. Differential effects of APG on move quality by player age 
 

(a) Model-free evidence 

 
Note. This figure illustrates the average Move Quality of 
professional players by player age. The red and blue 
fluctuating lines show the raw (unprocessed) weekly average 
values for younger players (below median age) and older 
players (above median age), respectively. The red and blue 
smooth lines and the shaded areas around them show the 
locally smoothed trends (loess; span=0.7) and the 95% 
confidence intervals. The vertical line indicates February 
2017, the date of the first public release of an APG, Leela. 

(b) Difference-in-differences approach 

 
Note. This figure illustrates the differential effects of APG on 
Move Quality by player age. The points graphically present 
the Move Quality of younger players (those below the median 
age) compared to that of older players (above median age), 
based on the regression estimates in Table B.2 of Appendix 
B, column 2. The vertical error bars show the 95% confidence 
intervals. We do not find a difference in Move Quality by age 
before the APG release. After the APG release, the increase 
in Move Quality is greater for younger players than for older 
players. 

 
 
 
Figure 3. The effects of APG on Move Quality 

across dyadic relationships of age group 
 

 
Note. This figure illustrates the improvement in Move Quality 
across various dyadic relationships, categorized by pairs of 
age groups, around the introduction of APG. The x-axis 
represents the focal player's age group, while the y-axis 
represents the counterpart's age group. 

Figure 4. Quantile treatment effects on 
Move Quality 

 

 
Note. This figure illustrates treatment effects at quantiles of 
Move Quality before and after the first public release of an 
APG, Leela, following the method suggested by Athey and 
Imbens (2006). The shaded areas show bootstrapped 95% 
confidence intervals. 
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Table 1. Descriptive statistics 
 

(a). Player-game level 
 

 N Mean Median SD P25 P75 
Move Quality 49,946 –2.01 –1.92 1.07 –2.66 –1.22 
Number of Errors 49,946 0.13 0.00 0.37 0.00 0.00 
Magnitude of the 
Critical Mistake 

49,945 5.66 4.80 3.96 2.94 7.36 

Age 49,613 28.07 24.31 12.58 19.55 31.52 
Young 49,613 0.62 1.00 0.48 0.00 1.00 
Rank 48,813 –0.27 –0.17 0.27 –0.42 –0.05 
Rank Diff 47,826 0.00 0.00 0.21 –0.09 0.09 
White  49,946 0.50 0.50 0.50 0.00 1.00 
7.5 Komi  49,946 0.38 0.00 0.49 0.00 1.00 
 

(b). Player level 
 

 N Mean Median SD P25 P75 
Move Quality 1,241 –2.20 –2.18 0.67 –2.52 –1.79 
Number of Errors 1,241 0.17 0.12 0.22 0.00 0.20 
Magnitude of the 
Critical Mistake 

1,241 –6.20 –5.98 2.09 –6.96 –5.05 

Age 1,188 32.41 26.98 16.11 20.12 42.55 
Young 1,188 0.50 1.00 0.50 0.00 1.00 
Rank 1,104 –0.52 –0.52 0.31 –0.79 –0.26 
Rank Diff 1,097 0.14 0.11 0.18 0.00 0.25 

Note. This table provides descriptive statistics of variables at the player-game level in Panel (a) and at 
the player level in Panel (b). Note that, to ease the interpretation of results, we multiply negative one 
by the rank of a player and divide it by 1,000 (Rank). That is, a higher Rank value indicates a better 
player. We also divide the rank difference between the focal player and the opponent by 1,000 (Rank 
Difference). A negative value for Rank Difference indicates that the focal player is a better player. 
 

Table 2. Effects of APG on average move quality of 
professional players: Time trend analysis 

 
 
Dependent Variable: Move Quality 
Model: (1) (2) 
Variables 

  

Post 0.756 
(0.017) 

[p<0.001] 

–1.007 
(0.038) 

[p<0.001] 
Trend  0.007 

(0.003) 
[p=0.023] 

Post × Trend  0.116 
(0.004) 

[p<0.001] 

Fixed effects  
 

Player Yes Yes 
Opponent Player Yes Yes 
Fit statistics  

 

Observations 49,946 49,946 
R2  0.264 0.330 
Within R2  0.116 0.195 

Note. This table shows the regression estimates on the effects of APG 
on the Move Quality of professional Go players before and after the first 
public release of an APG, Leela. Post takes unity for the games played 
in the quarters after February 2017. Trend refers to the number of 
quarters that had elapsed since the beginning of 2015; Trend takes the 
value of 10 in the first quarter after Leela’s release (Q2 2017). Clustered 
standard errors at a focal-player level are in parentheses and p-values 
are in squared brackets. 
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Table 3. Differential effects of APG by player age: 
Estimates on move quality and move match of young players compared to that of old players 

 
Dependent Variable: Move Quality Move Match 
Model: (1) (2) (3) (4) (5) k=1 (6) k=3 (7) k=5 
Variables        
Young 0.096 –0.053 

  
   

 (0.020) (0.021) 
  

   
 [p<0.001] [p=0.010]      
        

Rank 0.846 0.828 1.723 2.582 0.354 0.318 0.218 
 (0.036) (0.037) (0.246) (0.292) (0.048) (0.046) (0.037) 
 [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] 
        

Rank Diff 0.128 0.120 0.067 1.040 0.096 0.075 0.049 
 (0.028) (0.028) (0.025) (0.164) (0.027) (0.024) (0.022) 
 [p<0.001] [p<0.001] [p=0.008] [p<0.001] [p<0.001] [p=0.002] [p=0.025] 
        

White –0.133 –0.133 –0.130 –0.131 0.045 0.091 0.092 
 (0.010) (0.010) (0.009) (0.009) (0.002) (0.002) (0.001) 
 [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] 
        

7.5 Komi 0.021 0.019 0.021 0.037 0.001 0.001 0.000 
 (0.016) (0.016) (0.016) (0.018) (0.003) (0.003) (0.002) 
 [p=0.191] [p=0.248] [p=0.190] [p=0.047] [p=0.680] [p=0.679] [p=0.940] 
        

Post × Young  0.268 0.220 0.203 0.031 0.025 0.018 
  (0.028) (0.031) (0.031) (0.005) (0.005) (0.004) 
  [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] 
Fixed effects        
Quarter Yes Yes Yes Yes Yes Yes Yes 
Player   Yes Yes Yes Yes Yes 
Opponent Player    Yes Yes Yes Yes 
Fit statistics        
Observations 47,292 47,292 47,292 47,292  47,292   47,292   47,292  
R2  0.277 0.281 0.325 0.350 0.294 0.388 0.407 
Within R2  0.065 0.070 0.013 0.014 0.031 0.120 0.157 
Note. This table shows the regression estimates on the heterogeneous effects of APG by player age; the Move Quality of younger players compared to that of older players is 
estimated (Models 1–4). Post refers to games played in the quarters after the first public release of an APG in February 2017, and Young refers to young professional Go players. 
Models 5–7 assess the effect on Move Match by comparing players’ moves with APG’s top 1, 3, and 5 suggestions, respectively. Clustered standard errors at a focal-player level 
are in parentheses and p-values are in squared brackets.
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Table 4. Effects of APG on move quality: 
Errors and a critical mistake as mechanisms 

 
Dependent Variable: Number of Errors Magnitude of 

the Critical Mistake 
Model: (1) (2) (3) (4) 
Variables   

  

Post –0.055 
(0.004) 

[p<0.001] 

0.082 
(0.013) 

[p<0.001] 

–1.430 
(0.053) 

[p<0.001] 

2.261 
(0.143) 

[p<0.001] 
Trend  0.000 

(0.001) 
[p=0.730] 

 –0.028 
(0.012) 

[p=0.021] 

Post × Trend  –0.009 
(0.002) 

[p<0.001] 

 –0.233 
(0.015) 

[p<0.001] 

Fixed effects    
 

Player Yes Yes Yes Yes 
Opponent Player Yes Yes Yes Yes 
Fit statistics    

 

Observations  49,946   49,946   49,945   49,945  
R2   0.077   0.081   0.123   0.145  
Within R2   0.005   0.008   0.028   0.052  

Note. This table shows the impact of APGs on errors and on the critical mistake by professional Go 
players before and after the release of Leela. A dependent variable for Models 1 and 2 is Number of 
Errors and for Models 3 and 4 is Magnitude of the Critical Mistake. Post refers to games played in the 
quarters after the first public introduction of the APG in February 2017, and Trend refers to the number 
of quarters passed since the first quarter in our sample. Clustered standard errors at a focal-player level 
are in parentheses and p-values are in squared brackets.
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Table 5. Mediation analysis on game winning: Move quality, errors, and a critical mistake 
 

Dependent Variables: Win Move 
Quality 

Number of 
Errors 

Magnitude of 
the Critical 

Mistake 
Win 

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Variables            
Rank –0.095 2.582 –0.350 –7.373 –0.096 –0.027 –0.066 –0.161 –0.110 –0.140 –0.167 
 (0.106) (0.292) (0.101) (1.139) (0.098) (0.099) (0.098) (0.105) (0.106) (0.105) (0.105) 
 [p=0.372] [p<0.001] [p<0.001] [p<0.001] [p=0.327] [p=0.782] [p=0.499] [p=0.125] [p=0.300] [p=0.183] [p=0.111] 
Rank Diff –1.802 1.040 0.016 –1.897 –1.826 –1.796 –1.811 –1.829 –1.801 –1.815 –1.829 
 (0.087) (0.164) (0.065) (0.692) (0.086) (0.086) (0.086) (0.087) (0.087) (0.087) (0.087) 
 [p<0.001] [p<0.001] [p=0.804] [p=0.006] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] 
White 0.026 –0.131 0.047 0.628 0.029 0.028 0.030 0.029 0.027 0.029 0.030 
 (0.005) (0.009) (0.004) (0.037) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 
 [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] [p<0.001] 
7.5 Komi 0.000 0.037 –0.013 –0.129 –0.001 0.000 –0.001 –0.001 –0.001 –0.001 –0.001 
 (0.010) (0.018) (0.008) (0.080) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 
 [p=0.990] [p=0.047] [p=0.093] [p=0.107] [p=0.945] [p=0.978] [p=0.958] [p=0.918] [p=0.949] [p=0.930] [p=0.906] 
Post × Young 0.024 0.203 –0.024 –0.487    0.018 0.023 0.021 0.018 
 (0.009) (0.031) (0.009) (0.103)    (0.009) (0.009) (0.009) (0.009) 
 [p=0.008] [p<0.001] [p=0.006] [p<0.001]    [p=0.041] [p=0.012] [p=0.021] [p=0.041] 
Move Quality     0.026   0.026   0.017 
     (0.002)   (0.002)   (0.003) 
     [p<0.001]   [p<0.001]   [p<0.001] 
Number of Errors      –0.042   –0.042  0.003 
      (0.006)   (0.006)  (0.009) 
      [p<0.001]   [p<0.001]  [p=0.695] 
Magnitude of 
the Critical Mistake 

      –0.006   –0.006 –0.004 
      (0.001)   (0.001) (0.001) 

       [p<0.001]   [p<0.001] [p<0.001] 
Fixed effects            
Player Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Quarter Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Opponent Player Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Fit statistics            
Observations  47,280   47,292   47,292   47,291   47,538   47,538   47,537   47,280   47,280   47,279   47,279  
R2  0.214 0.350 0.082 0.153 0.217 0.215 0.217 0.216 0.215 0.216 0.216 
Within R2 0.018 0.014 0.005 0.011 0.020 0.019 0.020 0.020 0.019 0.020 0.021 

Note. This table shows how Move Quality leads to winning a game. We test two mechanisms, Number of Errors and Magnitude of the Most Critical Mistake. Models 1 to 4, 
respectively, indicate that, after the release of the APG, younger professional Go players were more likely to win, to improve Move Quality, to decrease Number of Errors, and 
to reduce Magnitude of the Critical Mistake. A dependent variable for Models 5 through 11 is whether a player wins a game. Models 5 to 7, respectively, show a player is more 
likely to win a game if the player’s Move Quality is greater, if the player’s Number of Errors are fewer, and if the player has a smaller Magnitude of the Most Critical Mistake. 
The finding is robust when we account for the differences in Move Quality by age, as shown in Models 8 through 10. Model 11 presents the full specification that includes all 
relevant variables. Taken together, younger players improve Move Quality, decrease Number of Errors, and reduce Magnitude of the Most Critical Mistake after the introduction 
of the APG; these changes lead to eventually winning a game. Clustered standard errors at a focal-player level are in parentheses and p-values are in squared brackets 
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